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DETERMINATION OF STRESS INTENSITY FACTORS AND 

CRACK-OPENING STRESSES FROM JUMPS IN CRACK-EDGE 

DISPLACEMENTS 

V. N. Maksimenko UDC 539.3:624~ 

In accordance with the superposition principle, stress-intensity factors (SIFs) - which 
control crack growth - can be calculated through the distribution of the nominal (crack- 
opening) stresses acting at the site of a crack in an undamaged structure. In actual struc- 
tures, these stresses may differ appreciably from the values predicted theoretically. 
Various theoretical-experimental methods are used to determine the nominal stresses (cutting 
out layers, drilling holes, cutting notches [1-5]) and the SIF from the strain fields in the 
region ahead of a crack tip (extensometry, recording of the opening of the crack near its tip 
by means of sensors or computer analysis of visual images, laser-assisted speckle methods, 
photoelastic and holographic methods [4-10], etc.). However, in most cases these methods are 
flawed by several deficiencies: the time consumed in different stages of machining; limita- 
tions of computational procedures in regard to specific configurations; a certain arbitrari- 
ness and lack of rigor attending the use of the methods. 

Using integral representations of solutions of problems concerning the elastic equili- 
brium of anisotropic plates weakened by a curvilinear slit (crack), here we proposed a 
method which makes it possible to use experimental jumps in crack-edge displacement found 
for several points to calculate two different stress-intensity factors and the distribution 
of the nominal stresses on the line of the crack in complex sectional structural elements 
made of metallic and composite materials. The efficiency and accuracy of the proposed ap- 
proach is evaluated by mathematically modeling several problems of practical importance and 
comparing the results with experimental data. 

I. We will take a loaded structure and isolate a plane element representing a plate 
made of an elastic, rectilinearly anisotropic (specifically, isotropic) material. The ele- 
ment occupies the finite region D in the plane xOy, and it contains a system of holes and 
cracks. The geometry of the structural element is shown in Fig. i. 

We will assume that the slit (crack) L passes completely through the element and that 
its edges are free of external forces. The structure is loaded in such a way that a plane 
stress state is realized in it in the absence of slit L. 

Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 
136-144, September-October, 1993. Original article submitted October 28, 1992. 
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W b  t~ 

Fig. 1 

We need to determine the SIF on the basis of known jumps in the displacements G(t) = 
[(u + iv) + - (u+ iv)-] = g1(t) + ig2(t) at the edges of the slit (Fig. i). 

The stress in the plate in the region of the defect can be expressed in terms of two 
analytic functions : 

where z v = x + iy; Dv are the roots of the corresponding characterized equation (with posi- 
tive imaginary parts [ii]). 

Following [12], we write the functions ~v(z v) in the form 

I 

,t,v (zO = Y~ ,t,~j (zO; ( 1 . 2 )  
i=o 

l_l_ f o~,, (~) dx,~ 
r  2~ t i . I  ~ , - z ~  ; ( 1 . 3 )  

L 

a (t) o~1 (t) + b (t) r + 0o2 (t) = O, 

M 1 (t) b (t) = bo 
a ( t )  = ao M2 (t)  ' M2 ( 0  ' 

ao = (~h - ~2) (~2 - ~2) - l ,  bo = (~1 - ~2) (Vt2 - ~2) - ' .  

(1.4) 

Here, r determines the main stress state, while Cvz(zv) is the perturbed stress state 

which arises in the presence of the slit L; r = O(t) is the angle between the x-axis and the 

normal n to the left edge of slit Lat point t; ds is an element of the arc of the contour of L; 
ml(t) belongs to the class of functions which are not bounded at the ends a, b of slit L [13], 
i.e., this function can be represented in the form 

fl* (t) (t e L), (i. 5 ) 
wl ( t ) -=  g ( t _  a) (t - 'b) 

where ~* (t) 

/(t - a)(t - b) is any branch which changes continuously on L. 

With allowance for (1.3) and the relations 

we c a n  f i n d  t h e  j u m p  i n  d i s p l a c e m e n t s  w ( t )  o n  L h a s  t h e  f o r m  
2 t 

G (t) = E {(p, + lq,) f o~, (%) dx, + (p, + ~,) J" ~ d~,}, 
'~=I aj .aj 

is a function of the class H on L in the neighborhood of the ends of the slit [13]; 

(1 .6 )  
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We can easily use (1.6) to establish the physical significance of the functions ~l(t). 
Differentiating (1.6), we obtain 

dw 2 
d t  = ~=1= {(p~ + iq~) M~ (t) to~ (t) + (p~ + i'q~) M~ (t) to, (t)}. ( 1 .7  ) 

Thus ,  i t  f o l l o w s  f rom ( 1 . 4 ) ,  ( 1 . 7 )  t h a t  ~ , ( t )  can  be e x p r e s s e d  d i r e c t l y  t h r o u g h  t h e  d e r i v a -  
t i v e s  of the displacement jumps on L: 

oJ~ (t) = w ( t ) [ A  ( t ) - a  (t)] - W ( t ) [ ~  ( t)-  b (0] , ( 1 . 8 )  
1A (r) - o(t)l 2 + IB(t)- b(t)[ 2 

to~ (t) = - a  (t) o~ (t) - b (t) to~ (t), 

{-- dg 2 (t) - dgt (t)~ 
w (0 = [p~ a m  - q~ ,,---7-) [ (~q~ - ~,~b~) M~ (0  ] - ' ,  

A (t) = A o M  1 ( t ) / M 2  (t), B (t) = BoM1 ( O / M 2  (t), 

Ao = (P2qt - Plq~) (P~q2 - P~q~)-t, Bo = (p~q~ - Ptq~) (P~q2 - P~q2)-~. 

For the given case of an internal crack, we can use (1.6) and conditions corresponding to 
continuity of the displacements at the tips of the cracks to obtain the following additional 
condition for ~l(t): 

f tol (x) dxl  = 0. ( 1 . 9 )  
L 

Let the equation of the contour of L be described by the relation t = ~(q) (a = ~(-i), b = 
x(1)), where 4 is a dimensionless real-valued parameter. Then, with allowance for (1.5), we 
can represent the function wl(t) in the form 

~,  (0 = ~ [~ (~)1 = ~ (~) = z ~  (J - ~ ) - ~ .  ( 1 . 1 0 )  

Having determined ~l(t) (and, thus, X ~ (• through the derivatives of the displacement 
jumps on L by means of Eq. (1.8), we use (1.1-1.2) and (1.9) to obtain asymptotic formulas 
for the stresses in the neighborhood c = ~(+i) of the ends of the slit L: 

lim ~ (o~, X~y, %) = Re -+ ~ ~ (g2~, - y r .  1) C~('~) , 
r ~ O  ~=•  v= l  

C~ (0) = Q~ [M~ (c) (cos ~ + ~t, sin O) -1 ]1,2, 

Q l = Z ~  Q2 = - a ( c )  f l l - b ( c ) V d l ,  

(1.11) 

as well as the SIFs for normal rupture and shear KI, 2 [14]. 

2. We will represent the potentials @v(zv) for the cracked plate in the form 

2 

�9 ~ (=0 = ~ ~ (z0, (2. i) 
}=0 

2 

where ev1(zv) -- @ l(z ) (see (1.3)), while the potentials qb,?(z~)=~dP~(z~) correspond to the 
}=I 

case when the external loads applied to the body are equal to zero everywhere except for the 

edges of the slit L. Then obviously the potentials r will determine the nominal 

stresses in the undamaged plate from the action of the same system of external forces. 

Having inserted (2.1) into the boundary conditions for L [12], we have 

( 2 . 2 )  

With allowance for (1.3-1.4) and the properties of the potentials @~0(zv), we find from (2.1- 

2.2) that 
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2 

X ~ (t) + ~~ yO (t) = (F2 - ~2) M~ (t) ~ {a (t) ~ ,  (tt) + b (t) ~ + ~ (t~)} 
/ = I  

( 2 . 3 )  

(X~(t)ds, Y~(t)ds are projections of the nominal stresses acting on a curved element ds of 

the contour of L in a plate without a crack). 

We will examine three special cases of the problem formulated above. 

A. Let the damaged element be an infinite plate with a crack L. Then ~2(zv) ~ 0, and 

after allowing for (1.3) and completing certain transformations we obtain the following from 
(2.3) to explicitly express the nominal stresses on the line of the defect in terms of the 
function ml(t): 

r (0 = M~ (0 (~2 - g,) (~0 -~, 

KI (t, x) ds = ~ d In ~l - tl + g~(t) ~2 - ~) a/~2 , 

K1(t , "r) = K2(t , 

o (x, o)i,  xy(X, 
formula 

If the crack is located along a straight line, then Eq. (2.4) is simplified considerably: 
�9 ) ~ 0. For example, for a crack L = {Ixl < a, y = 0}, the nominal stresses 

0) acting at the site of the crack L in the infinite plate are given by the 

- o ( x ,  O )  = - -  o (x, O) + .2o.~ 

a 

~'2 =i- ~'1 f 'or, (*)- xd~ ( 2 . 5  ) 
- a  

Limiting ourselves to examination of a type-I crack and proceeding analogously to [12] 
by taking the limit in (1.3), (2.5) for the case of an isotropic medium, we arrive at the 
relations obtained in [4]. 

B. Let a plate loaded by a system of external forces occupy the half-plane D = {x > 0} 
and be weakened by a crack L originating from or located close to the straight edge x = 0 of 
the plate. Then in accordance with [12] 

. ,, l 
a,~2 (zv) = 2~i [ sv---Z=~:7 

l - ~'3-,,- ~ nv - t,3-~- ~________2 s~ = ~' g2 (v = 1, 2). 
~t-a -- f, t 3 - v '  ~,, -- f l -3 -v '  11,--7' m y  ~-- .tt--~ 

( 2 . 6 )  

The thus-constructed potentials r v) automatically satisfy zero boundary conditions for the 

stresses on the edge of the half-plane x = 0 and at infinity. Allowing for (2.1) and (2.6), 
we use the same method and (2.3) to find that the nominal stresses on the line of the crack 
are determined by a relation of the form (2.3). The kernels Kj(t, ~) are more complex in 
form for this case and are omitted here. 

C. Let the region D occupied by the plate be an infinite plane xOy outside an ellipti- 
cal hole A = {(x/a) 2 + (y/a) 2 = i}, and let the crack L (internal or edge) be located next 
to A. The closed analytic representations of the potentials ~2(z ) in [15], expressed 

through the function ml(t), automatically satify the boundary conditions on the edge of the 
elliptical hole A which is free of external forces and decay at infinity. With allowance for 
the results in [15], we also find that, as previously, the nominal stresses on the line L in 
the undamaged plate are determined through the function ~l(t) by means of Eqs. (2.4) (due to 
its awkwardness, the explicit form of Kj(t, ~) is not presented here. 
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In accordance with St. Venant principle, Eqs. (2.4-2.5) (case A) will satisfactorily 
approximate the distribution of the nominal stresses at the site of the crack for :finite 
plates as well if the perturbed stress state which develops due to the presence of the slit L 
is localized and does not propagate to the boundaries of the plate. If the defect is located 
near the straight edge of the plate, the elliptical hole, or the boundary of the body (being 
an arc of an ellipse) and if the effect of the other boundaries can be ignored, then Eqs. 
(2.4) can be used to determine the nominal stresses for cases B and C, respectively. 

3. We will assign the jumps of the crack-edge displacements along the x-axis gP = 

(u + - u-)P and y-axis gq = (v + - v-)q at arbitrary points tp = T(~p) e L (p = I, N I) and 

tN1+q = T($NI+q ) e L (q = I, Ni), respectively*. 

We represent the function G(t) as an approximating series in Chebyshev functions of the 
second kind Uk($) = sin (k arccos 6) [16]: 

M 

a (t) = G (~ (~)) = G* (~) = ]~ AkUk (~). ( 3 . 1 )  
k= l  

Here, A k = a k + ib k are unknown complex constants. 

We will use the least squares method to determine A k. 
functional 

To do this, we examine the 

p=l = 

Then the necessary condition of the extremum yields a system of 2M linear algebraic equations 
to find aj, bj (j = i, M): 

o--~j = 2 a~Uk (lgp) - gf Uj ([~p) = O, ( 3 . 2 )  
\ k=1 

O-~i = 2 q~=,= bkVk (~N,+q) - g~ Uj (~^q +r = O. 

Having determined A k from (3.2) and using (3.1) and the relation from [16] 

dUk (8) ~rk (8) 
d~ = ~ '  T,  (~) = cos (k arccos {3) ( k = l ,  2 . . . .  ) 

we write an expression for the derivative of the displacement jumps: 

~c g? (~) + ig ~ (~) l M 
- -  = - ,/7=---#f. ~,  kAkTk (~). df~ 4: ~2 - V l  - ~;~ k = l  

In accordance with (1.8), (I.I0), and (3.3), we have 

~0(~)  = Wo({~)_[A(t)-a(t)] - ~ [ B ( t ) - b ( t ) ]  ('d.ss)-i - 

la (t) - .  (t)[ 2 +  I B (t) - b (t) 12 ( a ~ )  ' 

Wo (~) =, [p2g2 ~ (~) - $~? (~) ] [(P2q2 - P252) 342 (t) ] - t  

(~.3) 

(3.4) 

Knowing X~ we use Eqs. (i.ii) to obtain the SlY and asymptotic formulas for the stresses 
in the neighborhood of the crack tips. 

With allowance for substitution of variables (I.I0), Eq. (2.4) can be represented in the 
form 

tin particular, the pointstj = T($j) (j = !, N I + N=) may coincide. 
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I 

x.  ~ (t) + ,.~ Y; (t). = + k~ ([~, n) -,t ~ (n) + ~ ([~. n) vT-- ~ ,  

(~ - ~ )  ~ (~) c @ ,  c ([~) = c (~ @)), F (~, ~l) = .q (n) - ~I (~) 

ds d~ 
~ (f~, ~) = ~ r~ [~ (f~), �9 (,1) 1 c @), i @) = -~ , 

as 

(3.5) 

where F(~, q), kj(B, q) (j = i, 2) are continuous functions. 

To calculate the integral in (3.5), we use the formula in [17] 

i 
R 

I r  = 
-1  

2 m -  1 
~., = cos ~ ~ (m = 1, R), 

which is valid for regular integrals with any ~ and for singular integrals with 

= ~ , = c o s ~ r  ( r =  I , R -  1) 

( t h e  n u m b e r  o f  n o d e s  R i s  a n  a r b i t r a r y  n a t u r a l  n u m b e r ) .  We t h e n  a r r i v e  a t  a q u a d r a t i c  
f o r m u l a  t o  d e t e r m i n e  t h e  n o m i n a l  f o r c e s  a t  C h e b y s h e v  n o d e s  t r = Z ( ~ r )  ( r  = i ,  R - 1 ) :  

R 
= ~ {k~ (~., ~,,,) ~0 (~,,,) + ~2 (~., ~,,) ~ . , ) } ,  

x,  ~ (t,) + ~2r,  ~ (t,) -~ ~ 

4. From a practical viewpoint, the proposed method of calculating the SIFs Kl, 2 and 
the nominal stresses on the line of the defect is useful only if acceptable results can be 
obtained on the basis of measurement of the crack-edge displacements at a small number of 
points removed from the tip. We performed a numerical experiment to study the error of the 
proposed method in relation to the number and location of the points where the displacement 
of the edges is determined. Data for the isotropic material was obtained by taking the limit 
in the anisotropy parameters in the numerical solution. 

As examples of use of the method, we chose the following types of problems for iso- 
tropic plates with type-I cracks: a) a central crack in a tensioned strip of finite width, 
a/W = 0.7; b) an edge crack in a tensioned half-plane; c) an internal crack in a tensioned 
half-plane, d/a = 0.i; d) a hole with an edge crack in a tensioned plane, a/r = 0.i; e) a 
crack next to a hole in a tensioned plane, a/r = i, d/a = 0.i; f) an infinite plate with a 
crack whose edges are loaded by a pair of symmetrically applied concentrated forces, b/a = 
0.5 (Fig. 2a-f). The solutions of these problems either have closed expressions [14] or are 
obtained by means of an application package employing the SIU method [12, 15]. In calculat- 
ing the SIF /from formulas (i.ii), (3.1-3.4), we used values of crack-opening at 1-5 nodes 
located on the contour of the crack at points with the coordinates ~(~) = xk/a = 0; 0.2; 0.4; 

0.6; 0.8 and ~(~) = 0.I; 0.3; 0.5; 0.7; 0.9 (k = i, 5). 

Table 1 shows the errors of the calculation of the SIF for normal rupture K I at the left 
and right tips of a crack 6 (+a) in relation to the number of points p (p = i, 5) with coordi- 

nates ~(~)(k = i, p), where the opening of the crack was given (measured). The solutions for 

the families of nodes {~(~)}, {~(~)} (k = i, p) are given above and below the lines, respec- 

tively. Here and below, the number of terms of approximating series M in Eq. (3.1) was taken 
equal to p. 
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Fig. 3 

For comparison, Table 2 shows the error 6 (• of the calculations for problem e with 
eight variants (N = i, 8) of crack-opening measurement at two and four nodes positioned 
symmetrically relative to the center of the crack; the positive coordinates of the chosen 
nodes are designated by the plus sign. 

An analysis of the calculated results presented in Tables i and 2 shows that, for prob- 
lems a-e, the proposed method determines the SlF from crack-opening values at two or three 
points quite far from the tip with an error of 1-7%. The best results are obtained as the 
observation points approach the tip and increase in number. If the loads are applied to the 
edges of the defect and are local in character (such as in the case of a crack on a loaded 
fastener hole), the accuracy of the method declines somewhat (see Table i, problem f). 

Let us make use of the experimental data reported in [4] on the opening of the edges of 
a central crack in a strip of steel $45C tensioned by forces o = i00 MPa (Fig. 2a, 2W = 35 
mm, sheet thickness 2 mm). Points 1 and 2 in Fig. 3 show these results for the half-length 
of the crack when a = 3.3 and 4.2 mm. In accordance with the proposed method, we used this 
empirical data and (3.1) to determine crack-opening G(t) with M = I (line). We also calcu- 
lated the SIF/K I and the miminal stresses on the line of the crack. The error of the deter- 
mination of the SIF relative to the theoretical solution [14] is 1.6 and 5.4% when a = 3.3 
and 4.2 mm. The error of the nominal stresses calculated from Eq. (2.5) for o = i00 MPa is 
3.9 and 9.0%, respectively. 

The results of the numerical modeling and the comparison with the experimental data 
show the high degree of accuracy and reliability of the proposed method. Among its advan- 
tages are quickness, flexibility (different shapes of structural elements and different 
shapes, locations, and types of cracks, isotropic or anisotropic materials, etc.), the 
possibility of reliably determining the stresses at the site of a crack in an undamaged 
structure, and the possibility of determining the first and second stress-intensity factors 
on the basis of crack-opening data at two or three points away from the tip. The simplicity 
and efficiency of the proposed method makes it possible to recommend it for practical use in 
evaluating the strength and predicting the safe life of structure. 
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PROBE DIAGNOSIS OF A FLOW OF PARTICLES DESORBED 

FROM THE SURFACE OF A SOLID BY A LOW-DENSITY 

PLASMA JET 

V. Z. Korn and V. A. Shuvalov UDC 533. 932 : 533 . 601.18 

The dynamic interaction of bodies with a flow of low-density gas is characterized by a 
variety of processes and phenomena occurring at the phase boundary. If the energy of the 
incident particles is greater than approximately 5 eV, processes involving energy and momen- 
tum transfer are accompanied by the dispersal of surface contaminants and layers of adsorbed 
gases, the desorption of particles from the surface, etc. Monitoring and study of these pro- 
cesses are very important from phenomenological and practical viewpoints to establish a 
balance between transfers of momentum, mass, and energy at the phase boundary. The parameters 
of mass flows dispersed by inflowing particles are usually measured by the gravimetric method 
[i, 2]. However, this method does not distinguish between the fraction of particles desorbed 
from the surface due to the dispersal of adsorbed layers and coatings by the incoming flow 
and the fraction of the loss due to erosion of the material of the surface [3]. Such a 
distinction is important for describing mass transfer in gas-surface systems and momentum 
and energy transfer at phase boundaries. 

In the present article, we describe the methodology and results of an experimenta!study 
of the parameters of particles desorbed from a surface as a result from its bombardraent by an 
inflowing low-density plasma. It is shown that the proposed method makes it possible to 
determine the fraction of particles adsorbed on the surface of the solid and evaluate their 
parameters. 

I. A body placed in a high-velocity flow of a low-density plasma is subjected not only 
to incoming neutral and charged particles accelerated in the near-electrode layer, but also 
to particles desorbed from the surface by its intensive bombardment. Within a certain range 
of surface potentials, the particle desorption stimulated by the incident flow results in an 
increase in the total momentum transferred to the surface of the body. In a detailed exami- 
nation of the balance of forces acting on a body in a low-density plasma flow, the momentum 
imparted to the body can be determined in the form 

F~ I) (V) = ~ (V) + ~ (V) + AF 

for a surface free of adsorbent and 

F~ 2)(V) = ~ ( V )  + ~ ( V )  + A F + F d  
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